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Abstract

Spatially explicit land cover land use (LCLU) change information is needed to drive
biogeochemical models that simulate soil organic carbon (SOC) dynamics. Such infor-
mation is increasingly being mapped using remotely sensed satellite data with classi-
fication schemes and uncertainties constrained by the sensing system, classification
algorithms and land cover schemes. In this study, automated LCLU classification of
multi-temporal Landsat satellite data were used to assess the sensitivity of SOC mod-
eled by the Global Ensemble Biogeochemical Modeling System (GEMS). The GEMS
was run for an area of 1560 km? in Senegal under three climate change scenarios
with LCLU maps generated using different Landsat classification approaches. This
research provides a method to estimate the variability of SOC, specifically the SOC
uncertainty due to satellite classification errors, which we show is dependent not only
on the LCLU classification errors but also on where the LCLU classes occur relative to
the other GEMS model inputs.

1 Introduction

Africa is experiencing rapid and substantial social, economic, climatic and environmen-
tal change (Brooks, 2004; Challinor et al., 2007; IPCC, 2007; Nkonya et al., 2011). Soil
carbon is important in West African drylands for soil fertility and agricultural sustain-
ability and the influence of land management under changing climate on soil carbon is
of particular interest (Batjes, 2001; Lal, 2004; Tieszen et al., 2004). Biogeochemical
model simulations of carbon dynamics in vegetation and soil in response to changes
in land cover and land use (LCLU), land management and climate increasingly use
spatially explicit LCLU data derived from satellite remote sensing (Turner et al., 2000;
Liu et al., 2004; Kennedy et al. 2006; Liu et al., 2008, Tan et al., 2009). There is a
recognition however that errors in satellite derived LCLU data, both in terms of classifi-
cation errors and the degree of generalization of the landscape into the different LCLU
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classes, and differences between LCLU data sources and land cover classification ap-
proaches, may propagate into model outputs (DeFries et al., 1999; Reich et al., 1999;
Turner et al., 2000; Quaife et al., 2008).

Remotely sensed satellite data have been used extensively to map land cover
(Tucker et al., 1985; Pickup et al., 1993; Lambin and Strahler, 1994) although human
influences are difficult to discern reliably except when using high spatial resolution data
(Townshend and Justice, 1988). Consequently, high spatial resolution data, in partic-
ular from the Landsat satellite series, have been used for mapping land cover change
over decadal periods (Skole and Tucker, 1993; Gutman et al., 2008). Satellite classi-
fication by visual photo interpretation is not suited to mapping large areas on the con-
sistent and repeated basis required for long term monitoring. Automated techniques
that use digital computer processing and statistical classification approaches largely
overcome this issue, but also do not provide error free classifications. Furthermore, it
is not usually possible to reliably map land use, i.e. the land’s social, economical, and
cultural utility, using automated techniques (Turner et al., 1997). In semi-arid areas,
such as the West African Sahel, satellite land cover classification is particularly chal-
lenging because the vegetation types may be sparsely distributed across variable soil
backgrounds and because they frequently transition and mix across the landscape at
scales finer than the satellite pixel dimension (Frederiksen and Lawesson, 1992; Prince
et al., 1990; Lambin and Ehrlich, 1997). Further, semi-arid vegetation often exhibits a
marked seasonality in photosynthetic activity and leaf area in response primarily to
seasonal precipitation, making the selection of appropriate satellite acquisitions impor-
tant (Hiernaux and Justice, 1986).

The General Ensemble biogeochemical Modeling System (GEMS) is a well-
established biogeochemical model developed for spatially and temporally explicit sim-
ulation of biogeochemical cycles (Liu et al., 2004; Tan et al., 2009). In this paper the
sensitivity of GEMS modelled soil organic carbon to satellite LCLU mapping uncertain-
ties is quantified for a semi-arid Sahelian region of Senegal. Supervised decision tree
classification approaches are used to map LCLU from multi-temporal Landsat satellite
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data which are used to drive sapatially explicit maps of GEMS soil organic carbon un-
der different climate change scenarios. A description of the study area (Sect. 2), the
Landsat data and pre-processing (Sect. 3) and the GEMS input data and parameteri-
zation (Sect. 4) are described. This is followed by description of the LCLU classifica-
tion (Sect. 5) and carbon modeling and sensitivity analysis methodologies (Sect. 6).
The results are presented and discussed (Sect. 7), preceding the concluding remarks
(Sect. 8).

2 Study area

The study area is located in the north of Senegal, bordered by the Senegal River to
the North and the Atlantic Ocean to the west, with the southern edge 100 km north
of Dakar (Fig. 1). It covers 1560km? lying between 15°24" to 17°00' W and 15°00’
to 16°42' N. The area has a semi-arid climate with a single rainy season from June—
July through September—October; average rainfall decreased from 400-600 mm in the
1960’s to 200—400 mm in the 1990’s, mean monthly temperature varies from 24.5°C in
January to 31.9°C in May (Fall et al., 2006).

The study area includes a wide range of land covers and land uses, and con-
sequently soil organic carbon, making it appropriate for the sensitivity analysis de-
scribed in this paper. Most agricultural activities in the study area are undertaken
during the rainy season, planting occurs in June followed by harvesting in late Oc-
tober through November. Flood recession farming is practiced in the Senegal River
valley and irrigated crop production, largely dominated by vegetable production, is
practiced where groundwater is available elsewhere. The dominant natural vegetation
species are, trees: Acacia raddiana, Balanites aegyptica, Sclerocarya birrea, Com-
bretum glutinosum, Adansonia digitata (boabab tree); shrubs: Guiera senegalensis,
Boscia senegalensis, Calotropis procera; and grasses include primarily Cenchrus bi-
florus, Schoenefeldia gracilis and Dactyloctenium aegyptium. In order to summarize
the region succinctly we refer to the Senegalese ecoregions defined by Tappan et
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al. (2004). The study area encompasses four of the 13 ecoregions, and these are
described below.

The smallest ecoregion (2 % of the study area), is a narrow strip of land (10 to 30 km
wide) along the Atlantic coast (120 km) from Saint-Louis to Dakar. The predominant
soils are ferruginous tropical sandy soils, deep and well drained, low in organic matter
and mineral content (Tappan et al., 2004). The ecoregion is characterized by geomor-
phological features composed of active littoral and stabilized continental sand dunes
that alternate with longitudinal depressions. The sand dunes support shrub savanna
used by pastoralists as gazing land. The longitudinal depressions, locally called niayes,
have given their name to the region as a whole, and are used for irrigated agriculture
owing to the shallow water table accessed by artisanal wells. The main irrigated agricul-
tural land use is market gardening, primarily carrots, onions, and cabbages, for sale in
Dakar. Beginning in the early 1980’s, coastal sand dune stabilization projects planted
drought-tolerant Whispering Pine (Casuarina equisetifolia) which cover much of the
coastal zone from Dakar to Saint-Louis (Tappan et al., 2004; CSE, 2005). A second
ecoregion, lying east of the smallest ecoregion, and covering 45 % of the study area,
includes much of the peanut basin, an area dedicated since the 1880s to groundnut
cultivation. The predominant soils are slightly leached ferruginous tropical sandy soils
lying in the plateau of the continental sedimentary basin. The main crops are millet,
groundnuts, and sorghum in acacia tree parkland, which have replaced all vestiges of
the pre-colonial woodland savanna landscape (Tappan et al., 2004). A third ecoregion,
lying in the north east (east of Lake Guiers, Fig. 1) and covering 43 % of the study
area, is the sandy ferlo. It constitutes Senegal’'s main sylvo-pastoral zone, an area
that is generally too dry for crop production, with mean annual precipitation less than
200mm. The vegetation is composed of open grasslands with scattered shrubs and
predominantly acacia trees on red-brown sandy and ferruginous tropical sandy soils.
The last ecoregion (11 % of the study area) is the Senegal River Valley, a floodplain
previously covered by riverine woodland, today used for irrigated-agricultural projects
that pump water from the Senegal River onto extensive rice and sugarcane fields. The
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predominant soils are hydromorphic and vertic with a sandy, clay loam, and clay. The
natural vegetation is open steppe, shrub steppe, and riparian acacia woodland.

3 Satellite data
3.1 Landsat data

Landsat Enhanced Thematic Mapper Plus (ETM+) satellite data were used in this
study. All six 28.5m reflective, the two 57 m thermal (low and high gain), and the
single 15m panchromatic bands were used. Each ETM+ scene is approximately
180 x 180 km and is defined in the UTM coordinate system and referenced by a unique
Landsat Worldwide Reference System (WRS-2) path and row coordinate (Arvidson et
al., 2001).

Multi-temporal satellite data provide improved land cover classification accuracies
over single-date classifications if the acquisitions capture seasonal and agricultural
differences (Lo et al., 1986; Schriever and Congalton, 1993). Consequently, in this
study two Landsat ETM+ scenes, acquired in 2002 in the early wet season (21 June)
and the dry season (30 December) over the study area, WRS-2 scene path 205 row
49, were used. These acquisitions were selected because they were the only available
scenes with very low (< 1%) cloud cover. They are considered to be representative of
the year 2000 in the subsequent GEMS modeling.

3.2 Landsat data pre-processing

Landsat data are affected by several factors that need to be corrected before multi-date
data can be compared reliably (Coppin et al., 2004). In this study, corrections for ra-
diometric, atmospheric and geometric effects were undertaken. The ETM+ reflective
bands were converted from digital numbers to at satellite reflectance using the best
available ETM+ calibration coefficients and standard correction formulae taking into
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account the solar constant (Markham and Baker, 1986). The thermal bands were simi-
larly converted from digital numbers to effective at satellite temperature using standard
coefficients and Planck function formulae (USGS, 2001). The impact of the atmosphere
is variable in space and time and is usually considered as requiring correction for quan-
titative and change detection applications (Ouaidrari and Vermote, 1999; Coppin et al.,
2004). Several Landsat atmospheric correction methods have been proposed, with the
dark-object subtraction (DOS) method widely used due to its methodological simplicity
(Chavez, 1996). In the DOS approach, atmospheric path radiance is assumed to be
equal to the radiance sensed over dark objects, such as dense vegetation or water, and
is subtracted from each band. In this study, each Landsat acquisition was normalized
using a dark object subtraction method to reduce scene-to-scene and within scene ra-
diometric variations associated with atmospheric, phenological, and sun-sensor-target
geometric variations. Surface reflectances were computed independently using inland
water bodies and a small number of cloud shadows as dark objects. Clouds and cloud
shadows were screen digitized manually and not considered in the subsequent analy-
sis as they preclude optical wavelength remote sensing of the surface and deleteriously
contaminate surface reflectance (Roy et al., 2010).

The two ETM+ acquisitions had already been ortho-rectified following established
procedures (Tucker et al., 2004). However, to ensure precise sub-pixel co-registration,
an image-to-image registration was performed using 25 ground control points identified
in both scenes, and the December image was nearest neighbor resampled into refer-
ence with the June acquisition using a first-order polynomial warping transformation.

4 GEMS model, input data and parameterization

41 GEMS model overview

The General Ensemble biogeochemical Modeling System (GEMS) was developed from
the CENTURY model (Metherell et al., 1993) to enable integration of spatially explicit
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GIS data, including land cover, soils, climate, and land management practice informa-
tion (Liu et al., 2008). CENTURY is an established plant-soil ecosystem model that
simulates the dynamics of carbon, nitrogen, and phosphorus in various ecosystems
including grassland, forest, savanna, and crop systems (Metherell et al., 1993; Par-
ton et al., 2004). The input parameters comprise site specific biophysical data, plant
characteristics, and management data, including monthly precipitation, monthly maxi-
mum and minimum air temperature, soil texture, bulk density, drainage, water holding
capacity, cropping systems, fertilization, cultivation, harvesting, grazing, tree removal,
and natural disturbances such as fire (Parton et al., 2004; Liu et al., 2004). GEMS
couples CENTURY with various spatial databases to simulate biogeochemical cycles
over large areas (Liu et al., 2004, 2008).

GEMS consists of three major components: an encapsulated ecosystem biogeo-
chemical model (i.e., CENTURY), a data assimilation system (DAS), and an in-
put/output processor (IOP). The DAS includes algorithms that search and retrieval rel-
evant information from various databases according to the keys provided by a joint fre-
quency distribution (JFD) table and data processing mechanisms (Liu et al., 2004). The
IOP incorporates the assimilated data to the modeling processes and in return writes
the selected output variables to a set of output files after each model run. The main
output variable of interest for this study is the total soil organic carbon (SOC) (gC m'z)
in the top 0—20cm soil layer. Soil organic matter is a key indicator of soil quality and
is most usually determined by application of conversion factors to estimates of the
soil organic carbon to some prescribed depth (Lal, 2004). The GEMS model includes
three soil organic matter pools (active, slow and passive) with different potential de-
composition rates or turnover, fast turnover (active SOM), intermediate turnover (slow
SOM) and slow turnover (passive SOM) (Metherell et al., 1993). In addition, the GEMS
above ground net primary production (NPP) (gC m™2 yr) is examined to ensure that the
SOC and NPP values are plausible and spatially coherent. The GEMS model inputs
are described below for the spatially explicit input data and the GEMS look up table
parameterizations.
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4.2 GEMS spatially explicit input data
4.2.1 Land Cover Land Use (LCLU) data

Spatially explicit 28.5m LCLU maps representing the year 2000 were derived by mul-
tiple classifications of the Landsat ETM+ satellite data using a number of approaches
described in detail in Sect. 5.

4.2.2 Climate data

Spatially and temporally explicit climate data were defined using 37 years of monthly
average precipitation and minimum and maximum air temperature data defined in 0.05
degree grid cells (Hutchinson et al., 1996) nearest neighbor resampled to the 28.5m
Landsat pixel dimensions. These monthly data were available for the period 1960—-1996
and were used to “spin-up” the GEMS model to 1900 equilibrium, and then to run the
GEMS model from 1990 to 2000 and to run the GEMS model for three future climate
scenarios from 2000 to 2052. The future climate scenarios (no change, low and high
change) were developed following the approach developed by Hulme et al. (2001) who
assessed possible future (2000-2100) changes in temperature and rainfall for Africa
using seven global climate models. The Hulme et al. (2001) approach and results
are considered (Tan et al., 2009) to be compliant and comparable with those from the
IPCC Fourth Assessment Report (Christensen et al., 2007). Monthly climatologies of
the 1960-1996 precipitation and minimum and maximum air temperature data were
derived (i.e. 12 monthly values per 28.5m Landsat pixel). The no climate change
scenario (NCCS) simply used the same monthly values of these data for each month
of 2000 to 2052. The low climate change (LCCS) and high climate change (HCCS)
scenarios were defined by weighting the monthly climatology values using the following
equations derived from Hulme et al. (2001) for the study area:

Low Climate Change Scenario (LCCS):

Temperature : change (°C) = 0.0133.year-26.6 (1)
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Precipitation : change (%) = —0.25-year + 500 (2)
High Climate Change Scenario (HCCS):

Temperature : change (°C) = 0.06-year-120 (3)
Precipitation : change (%) = —-0.55-year + 1100 (4)

where year is set from 2000 to 2052. In this way, the LCCS and HCCS values are
equal to the NCCS values in the year 2000 and under the low climate change scenario
by 2052 the temperature is 0.69 °C warmer with 13 % less precipitation, and under the
high climate change scenario by 2052 the temperature is 3.12°C warmer with 28.6 %
less precipitation. We note that these scenarios do not model inter-annual variability
in precipitation and minimum and maximum air temperature data, which is a limitation
but not a concern for the purposes of this sensitivity study, and is the same approach
used by Liu et al. (2004) and Tan et al. (2009) to prescribe climate scenarios in studies
in Ghana and Senegal.

4.2.3 Soil, drainage and water holding capacity data

A map of static soil information was extracted from a Senegalese 1:500 000 vector soil
atlas defined with 168 soil units (Stancioff et al., 1986). Soil characteristics were de-
fined for the 45 soil units falling in the study area using a look up table with respect to
texture (i.e., factions of sand, silt, and clay), drainage state, and water holding capacity.
Sand fractions varied from 51 % and 87 %, silt fractions from 11 % to 38 %, clay frac-
tions from 5% to 15%. The drainage state varied from poorly drained (=0) to overly
well drained (=5), and the water holding capacity varied from high (clay = 5) to low
(sand = 1).

4.2.4 Potential natural vegetation data

A static potential natural vegetation (PNV) map for 1900 was needed to run the GEMS
model to equilibrium. In the absence of a PNV for Senegal, the earliest available
6598
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vegetation map (Stancioff et al., 1986) developed by visual interpretation of 1985 Land-
sat data supplemented by intensive field survey was used. The map was nearest
neighbor resampled to the 28.5 m Landsat pixel dimensions, assigning to each output
28.5m pixel the value in the input data set nearest its centre. This map is considered
as the most authoritative in its domain for Senegal for the 1980’s (Tappan et al., 2004).

4.3 GEMS look- up-table parameterization

Vegetation biomass and land management practices were parameterized using look-
up-tables related to the derived Landsat land cover land use (LCLU) classification data.
Joint frequency distributions of the look-up-table variables values for each of the Land-
sat LCLU classes were developed following established GEMS conventions (Liu et al.,
2004).

4.3.1 Vegetation biomass parameterization

Vegetation attributes required for the model parameterization were synthesized from an
inventory of soil and biomass samplings conducted in Senegal during the last 20 years
(CSE, 2004; Woomer et al., 2004b; Tschakert et al., 2004). Above-ground biomass
(trees, herbs, and litter) and their carbon stocks were calculated using allometric for-
mulae (Woomer et al., 2004a; Brown, 1997). The root biomass of trees and herbs were
estimated as 0.35 and 0.15 of the above-ground biomass, respectively, based on field
observations (Woomer et al., 2004a). The proportion of carbon in all biomass pools
was set as 0.47 (Woomer et al., 2004a).

4.3.2 Management practices

Management practices that affect carbon dynamics were used: crop composition, crop
rotation probability, temporal changes of harvest practices, cropping practices (includ-
ing plowing and selective cutting), fertilizer use, fallow probability and fallow length,
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fire frequency, and frequency and intensity of grazing. These practices were com-
piled from annual agricultural acreage and yield statistics, and livestock census data
defined by Senegalese administrative units (départements) (CSE, 2002) and from in-
formation collated in previous studies (Touré et al., 2003; Manlay et al., 2002; Tchakert
et al., 2004a). The management practices are summarized in Table 1 and were con-
sidered in terms of non-arable (including pastoralism) and arable land uses defined by
the Landsat classified LCLU class. The main crops grown are millet, sorghum, and
groundnuts. Fallow lengths were set as 1-5 years with successive 5—10 years of crop-
ping. Non-subsistence agriculture was assumed to have started in 1920 with current
mineral fertilizer use varying from 0 to 300 kg ha™’ (Tschakert et al., 2004). Before this
date, the study area was assumed to be savanna with low to moderate grazing (little
influence on plant production) that rose to current high grazing rates of 12 to 30 tropical
livestock units per km? (CSE, 2002), with an assumed linear effect on plant production
(Woomer et al., 2004a).

5 Landsat satellite data classification

The six 28.5 m reflective, and the two 57 m thermal (low and high gain) bands nearest
neighbor resampled to 28.5m were classified together as described below. Clouds
and cloud shadows were visually identified (< 1% of the image) and masked from both
Landsat acquisitions and were not classified. The dry and wet season Landsat data
were classified together, rather than independently.

5.1 Landsat LCLU classification scheme and training data

The state of the practice for automated satellite classification is to adopt a supervised
classification approach where samples of locations of known land cover classes (train-
ing data) are collected. The optical and thermal wavelength values sensed at the
locations of the training pixels are used to develop statistical classification rules, which
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are then used to map the land cover class of every pixel (Brieman et al., 1984; Foody
et al., 2006). Supervised classification results depend on the appropriateness of the
LCLU class nomenclature and on the quality of the training data used.

Table 2 summarizes the nine LCLU classes and the number of Landsat training pix-
els for each class. These nine classes were selected by examination of pre-existing
land cover maps including a land cover map of the north of Senegal generated by the
Centre de Suivi Ecologique (CSE, 2002) and were selected to ensure that the classes
were mutually exclusive and that every part of the study area could be classified into
one and only one class (Anderson et al., 1976). The CSE land cover map used the
Yangambi vegetation classification scheme that contains 25 vegetation classes defined
according to their physiognomy (i.e. structure and form of vegetation groups) (Monod,
1956; Trochain, 1957). The Yangambi scheme predates by two decades the availability
of satellite data, and the different Yangambi vegetation classes were not always spec-
trally unambiguous from one another in the multi-date Landsat data. For these rea-
sons several of the Yangambi classes were combined and three vegetation classes,
savanna grassland, mangrove and wetlands, were considered. In addition, the study
area includes non-vegetated surfaces not considered in the Yangambi scheme, and
the classes water, bare soil, rainfed agriculture, mud flats, and irrigated agriculture)
were identified based on our expert knowledge of the study area and multi-annual field
visits.

Training pixels for each class were selected by visual analysis of the co-registered
dry and wet season 2002 ETM+ imagery, augmented by our expert knowledge of the
study area including information gathered during multi-annual field visits. Only training
pixels that could be unambiguously identified were collected. A total of 11717 Land-
sat 28.5m training pixels were selected (Table 2). Ideally, the training data should be
representative of the area classified and of the classes in the classification scheme,
although there is no statistical procedure to define a suitable number and spatial dis-
tribution without a priori information concerning the area (Stehman, 1997; Foody et
al., 2006). Great care was taken in the training data collection. The land use-related
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classes (irrigated agriculture, rainfed agriculture, plantation forest) were the most diffi-
cult to reliably collect training data for. Irrigated agriculture is a unique characteristic of
the Senegal River Valley and was interpretable on the Landsat data owing to the pat-
terns of irrigation channels within and adjacent to agricultural fields. The peanut basin
is the foremost rainfed agriculture area of Senegal, and polygonal rainfed agricultural
fields were distinguishable by differences between the wet and dry season Landsat ac-
quisitions. Plantation forest in the Niayes ecoregion forms a distinctive strip observable
on the Landsat data.

Settlements contain different LCLU classes and consequently are difficult to classify
reliably (Barnsely and Barr, 1997; Sun et al., 2003). This was particularly true for the
rural villages occurring across the study area, which tended to be small and hetero-
geneous relative to the Landsat 28.5 m pixel size. Consequently, all of the settlements
were screen digitized manually and were not considered subsequently in the carbon
modeling.

5.2 Classification approaches

The Landsat ETM+ data were classified using bagged decision tree approaches. De-
cision trees are hierarchical classifiers that predict class membership by recursively
partitioning data into more homogeneous subsets (Breiman et al., 1984). Trees can
accept either categorical data in performing classifications (classification trees) or con-
tinuous data (regression trees). They accommodate abrupt and non-monotonic rela-
tionships between the independent and dependent variables and make no assumptions
concerning the statistical distribution of the data. Currently, bagged decision tree clas-
sifiers are the state of the practice approach for supervised satellite data classification
(Doan and Foddy, 2007; Hansen et al., 2008). Bagging tree approaches use a sta-
tistical bootstrapping methodology to improve the predictive ability of the tree model
and reduce over-fitting whereby a large number of trees are grown, each time using a
different random subset of the training data, and keeping a certain percentage of data
aside (Breiman, 1996).
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In this study, both hard and soft supervised classification approaches were under-
taken. Classifications are described as “hard” when each pixel is classified into a single
class category, i.e., full membership of a single class is assumed, and as “soft” when
each pixel may have multiple partial class memberships (Foody, 2000).

Thirty bagged classification trees were generated, each time, 25 % of the training
data were used to generate a tree, and the remaining 75 % were used to assess the
classification accuracy. The 25 % proportions were sampled at random with replace-
ment. To limit overfitting, each tree was terminated using a deviance threshold: addi-
tional splits in the tree had to exceed 1 % of the root node deviance or the tree growth
was terminated. For each of the 30 trees, a soft classification result was generated
defining for each 28.5 m Landsat pixel the probability of it belonging to each of the nine
LCLU classes.

A hard decision tree classification was generated from the 30 soft classifications.
Each soft classification was converted to a hard classification by assigning to each pixel
the class with the highest probability, and then assigning the single most frequently
occurring class category over the 30 classifications (Breiman, 1996; Bauer and Kohavi,
1999). When the maximum probability corresponded to more than one class, one of
the classes was selected randomly. The number of unique classes that a pixel was
independently classified in this way over the 30 trees was also recorded.

5.3 Classification accuracy assessment

The ensemble classification accuracy of the 30 soft decision tree classifications was
quantified using a confusion matrix based statistical method. The confusion matrix is
a two dimensional matrix composed of n columns and rows, where n is the number of
classes, and each column represents the number of instances of a predicted (i.e. clas-
sified) class and each row represents the number of instances of an actual true class
(Congalton et al., 1983). The diagonal of the confusion matrix records the agreement
between the “classified” and the corresponding “truth”. The off-diagonal records the
disagreement. Conventional confusion matrix accuracy assessment approaches are
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inappropriate for application to soft classification results (Foody, 2000). Consequently
a “soft-to-hard” confusion matrix generation methodology was developed following the
method of Doan and Foody (2007).

Recall that each of the 30 classification trees was generated from 25 % of the training
data sampled at random with replacement. In the accuracy assessment, first each
classification tree was used to classify the remaining (“out-of-bag”) 75 % of the training
data, deriving a vector of class probabilities for each out-of-bag pixel (Breiman, 1996).
Then a single confusion matrix was generated from the 30 vectors of class probabilities.
Throughout the 30 vectors of probabilities, each pixel was assigned to the LCLU class
with the maximum probability. If several classes had the same probabilities then one
class was selected at random.

Conventional accuracy statistics were then derived from the “soft-to-hard” confusion
matrix. The percent correct, was calculated by dividing the total number of pixels cor-
rectly classified by the total number of pixels in the training data. The Kappa coefficient
was also calculated as it provides another measure of overall classification accuracy,
but that uses all the elements of the confusion matrix to compensate for chance agree-
ment, although kappa values may be biased in areas with uneven proportions of the
different classes (Stehman, 1997, 2004; Foody, 2004). The producer’s and the user’s
accuracies were computed to assess the accuracies of each class (Foody, 2002). The
user’s accuracy was calculated by dividing the number of all correctly classified pixels
of a class by the sum of all pixels which had been assigned to that class; it indicates
the probability that a pixel classified to a given class actually represents the reality on
the ground (Congalton, 1991). The producer’s accuracy was calculated by dividing
the number of all correctly classified training pixels of a class by the sum of training
data pixels for that class; it indicates the probability of a training pixel being correctly
classified (Congalton, 1991).
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6 Carbon modelling and sensitivity analysis methodology
6.1 Carbon modelling

The GEMS model was used to estimate soil organic carbon SOC (gC m?) in the top
0—20cm soil layer and also above ground net primary productivity (NPP) (gC m? yr).
In this study we assumed that human disturbances in the study area were negligible
before 1900 and that consequently carbon stocks and fluxes were at near equilibrium
conditions in 1900. This is primarily justified since colonial impacts on Senegalese
land use practices in the early colonial period were limited to small urban settlements
and non-subsistence arable practices had largely not been developed (Gellar, 1976;
Tschakert et al., 2004). Estimates of carbon stocks and fluxes in the study area in
1900 were obtained by running the model for 1500 years to a 1900 equilibrium (Liu et
al., 2004; Tan et al., 2009) using the potential vegetation map, the 1960—-1996 climate
data, and the contemporary soil and drainage data described in Sect. 4.

The model was run from 1900 to 2000 using the 1900 carbon estimates to initialise
the post-1900 model runs. The land cover of the study area was characterized in 1900
by the potential natural vegetation map and in 2000 was characterized by the Landsat
classifications. The historical trajectory of land cover and land management between
1900 and 2000 is unknown, and so we assumed a linear change as a best estimate
and following the approach used by other researchers (Liu et al., 2004, 2008 and Tan
et al., 2009).

The GEMS model was run from 2000 to 2052 for the three climate change scenarios
described in Sect. 4.2.2. The GEMS model was run independently parameterizing the
2000 land cover land use and associated land management parameterization (Table 1)
from the 30 Landsat soft classifications and the single hard Landsat classification de-
rived from the 30 soft classifications. These 31 runs were each repeated for the no,
low, and high climate change scenarios.

We assumed there was no LCLU change after 2000 in order to assess only the sen-
sitivity of the GEMS model outputs to the LCLU classification uncertainties under the
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different climate scenarios. Moreover, prediction of future LCLU is difficult, not least
because even if appropriate statistical LCLU change trend data existed, it may not cap-
ture future changes in LCLU driving forces, such as economic and policy modifications,
acting at varying scales (Moss et al., 2010). Further, as LCLU in the study region is
extensively soil moisture limited, future LCLU scenarios can only be meaningfully de-
veloped when coupled with future climate scenarios. This will be examined in future
research that is not described here.

6.2 Soil Organic Carbon assessment and sensitivity analysis

Soil organic carbon (SOC) assessment and sensitivity analyses were performed to
explore the variability imposed by the different land cover classification approaches for
the three different climate scenarios. For the hard Landsat classification, where each
28.5m Landsat pixel is assigned to only one LCLU class, the SOC for each pixel and
simulation year and climate scenario was defined as:

SOCyear,scenario(i:j) =

where SOC, g4 scenario (1)) i the SOC estimated at pixel column and row (i,j) and
Cyear scenario,class (1)) 1S the GEMS modeled SOC at that pixel assuming that the pixel
is entirely LCLU class class. The net primary productivity (NPP) was similarly derived
for each hard classification pixel so that the GEMS NPP could be compared to the SOC
data to ensure the estimates were plausible and spatially coherent.

For each soft classification, where the probability of class membership is stored at
each pixel, the SOC for each pixel was defined as:

Cyear,scenario,class (i ’ ]) (5)

n
SOCyear,sceanrio(':]) = z Cyear,scenario,class('zJ) P2000,class (6)
class=1
n
z P2000,class =1
class=1
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where SOCq scenario(ih) 1S the SOC estimated at pixel column and row (i),
Cyear class(i-J) is the GEMS modeled SOC for that pixel assuming all the pixel is entirely
class class, and Py ¢lass) iS the soft classification probability of the pixel belonging to
class class.

7 Results
7.1 LCLU classification scheme and classification accuracy Assessment

Table 3 shows the “soft-to-hard” confusion matrix results for the 9 LCLU classes. The
classification accuracies tabulated in Table 3 provide an assessment of the ensemble
classification accuracy of the 30 soft decision tree classifications and so also indicate
the hard classification accuracy as it is derived from the 30 soft classifications. The
percent correct and Kappa were 97.79 % and 0.98 respectively. The producer’s and
user’s classification accuracies were greater than 90 % for all the classes except for
the wetlands, irrigated agriculture and mangrove classes. No class was misclassified
as another by a significant amount — the greatest misclassification was 0.19 % between
the rainfed agriculture and savanna grassland classes. These classification accuracies
are high and reflect what we expect is the best classification typically achievable for the
study area.

Figure 1 shows the hard decision tree classification where each pixel is classified
as one of the 9 LCLU classes. The classification indicates that in the study area, the
dominant land cover is savanna grassland (61.5 % of the area), followed by rainfed agri-
culture (20.58 %), and then mud flats (5.67 %), wetlands (4.92 %), irrigated agriculture
(3.25 %), water (2.93 %), plantation forest (0.70 %), bare soil (0.44 %), and mangrove
(0.01 %).

The hard classification was defined from the 30 soft classifications, assigning at each
pixel the single most frequently occurring class category over the 30 classifications
using a voting procedure. Pixels where all 30 soft classifications agreed are more likely
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to be reliable than those where there was disagreement. Figure 2 shows the number
of unique classes (maximum 9) that a pixel was independently classified as over the 30
decision tree classifications. Approximately 82 % of the pixels were classified into no
more than 2 classes with 55 % classified as one class and 27 % as two classes. The
least reliable areas, classified into 3 classes or more, occurred predominantly in areas
classified as wetlands, mud flats, bare soil, irrigated agriculture, and mangroves; these
classes also had the lowest producer’s and user’s accuracies (Table 3). Varying water
levels present in all of these cover types may confound their discrimination, which is not
unexpected when passive optical wavelength satellite data are classified (Ozesmi and
Bauer, 2002). In addition, the peanut basin agricultural expansion zone in the South
West of the study area, composed of a mix of savanna and rainfed agriculture, was less
reliably classified. This is most likely because of the presence of abandoned rainfed
agricultural fields in this region that are used for intermittent grazing and can physically
resemble grassland (Tappan et al., 2004; Tschakert et al., 2004).

7.2 Year 2000 carbon assessment and land cover classification sensitivity
analysis

7.2.1 Hard decision tree classification SOC and NPP model results

Figures 3 and 4 illustrate year 2000 GEMS SOC in the top 0-20cm soil layer and
the above ground NPP respectively. The data were estimated as Eq. (5) using the 9
LCLU class hard Landsat classification illustrated in Fig. 1 and using the corresponding
spatially explicit GEMS model inputs for the 9 classes under the no climate change
scenario. Some spatial discontinuities are evident and are due to changes in certain
GEMS input data, including the soil and climate data that are defined at coarser spatial
resolutions than the 28.5 m Landsat pixel dimensions.

Table 4 summarizes the mean SOC and NPP for the 9 LCLU classes defined by the
hard decision tree classification. The mean class SOC values range from 480.2gC m?
(Bare soil) to 1487.59C m? (Irrigated agriculture) with a mean study area SOC of
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1219.3gC m? or 12.193 MgC ha which is in general agreement with other worker’s
Senegalese estimates (Touré, 2002; Manlay et al., 2002; Touré et al., 2003; CSE,
2004). Owing to the spatial differences in GEMS input data, within a given LCLU class,
SOC values vary considerably. Thus, for Bare soil, SOC values range from a minimum
of 358 to a maximum of 1491 gC m?; while for Irrigated agriculture they range from
417 10 41389C m?. In general, higher SOC values (Fig. 3) occur where NPP is higher
(Fig. 4). The mean study area NPP is 185.1 gC m2/yr, which is in agreement with the
results of Parton et al. (2004) who estimated NPP values up to 200gC m2/yr in this
region using the CENTURY model and coarser 10 km resolution input data. Similar
differences of NPP values are also noted within LCLU classes.

7.2.2 Soft decision tree classification SOC results

There is insufficient space to illustrate the GEMS SOC derived as Eq. (6) for each
of the 30 soft decision tree classifications for the year 2000. The mean of the 30 soft
decision tree SOC estimates has a similar spatial pattern as the hard decision tree SOC
illustrated in Fig. 3. Table 5 tabulates summary statistics of the 30 soft decision tree
SOC estimates. Over the study area the mean SOC is 1217.4gC m? and is very similar
to the 1219.3gC m? value estimated using the hard classification SOC (Table 4). For
each class there is considerable variation between the minimum and maximum mean
SOC statistics. For example, the irrigated agriculture class has mean SOC varying
the most of all the classes from a minimum mean SOC of 457.9gC m? to a maximum
mean SOC of 4138.0gCm?. This is explained in Sect. 7.2.3. The class mean SOC
values in Table 5 are similar to the hard SOC classification equivalents tabulated in
Table 4. For all classes the difference in the mean SOC between the 30 soft and the
hard classification SOC results is less than 4 %, except for mud flats (31 %), bare soil
(22 %) and irrigated agriculture (8 %), which were the most inconsistently classified
over the 30 soft classification trees (Fig. 2).
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7.2.3 SOC sensitivity to land cover classification

The SOC varies between the 30 SOC soft decision tree classification estimates due
to differences both in the LCLU classifications and to spatial differences in the GEMS
model inputs. The 30 soft LCLU classifications are different because of differences in
the training data sampling which causes differences in the LCLU class membership
probabilities for each soft decision tree classification. In addition, the modeled SOC
for a given class can vary significantly from one location to another as a function of
the GEMS model inputs (soil, climate, land management etc). For this reason the
sensitivity of the GEMS SOC model is dependent not only on the LCLU classification
errors and the degree of generalization of the landscape into the LCLU classes, but
also on where the classes occur relative to the other GEMS model inputs.

To examine this sensitivity in more detail, Fig. 5 shows a map of the coefficient of
variation (the standard deviation divided by the mean) of the 30 SOC soft decision tree
classification estimates. The coefficient of variation, instead of the standard deviation,
is used as it enables meaningful comparison between pixels that have markedly differ-
ent mean SOC values. The SOC coefficient of variation varies from less than 0.15, for
the majority of the study area, to more than 0.60. The highest SOC coefficient of vari-
ation values occur for the less accurately classified classes described in Sect. 7.1 and
summarized in Table 3, i.e., for the bare soil, mud flats, wetland and rainfed agriculture
classes situated along the coast and in the northwest. In addition, higher SOC coef-
ficient of variation values occur in the peanut basin agricultural expansion zone in the
south west where the hard classification “reliability” results illustrated in Fig. 2 shows
several classes per pixel. This is most likely because abandoned rainfed agricultural
fields in this region are used for intermittent grazing and can physically resemble other
LCLU classes such as savanna grassland (Tappan et al., 2004).

Figure 6 shows histograms of the SOC coefficient of variation values for each land
cover land use class defined by the hard decision tree classification (Fig. 1). The less
accurately classified classes, i.e., bare soil, mud flats, wetland and rainfed agriculture,
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have more widely distributed SOC coefficient of variation values with more than 20 %
of their pixels with SOC coefficient of variation values greater than 0.1. The results
shown in Figs. 5 and 6 illustrate that satellite classification uncertainties impact the
GEMS model results not insignificantly. Similar SOC coefficient of variation histograms
were observed for the SOC modeled under the low and high climate change scenarios.

7.3 1900 to 2052 carbon assessment and land cover sensitivity analysis
under different climate change scenarios

Figure 7 shows the mean SOC averaged over all the classified pixels in the study area
for the no climate change scenario plotted every 4 years from 1900 to 2052. The open
circles show the mean SOC from simulation using the 30 independent decision tree
soft classifications; the orange filled circles show the mean of the 30 simulations. The
green filled circles show the mean SOC derived from the hard decision tree classifi-
cation carbon assignment approach. It is evident that from 1900 to 2000 the SOC is
generally decreasing, by about 32 % from approximately 1800 gC m? to approximately
1220gC m2, this is due to human land cover land use, with some perturbations in this
trend due to the growth and decay of the modelled vegetation.

Figure 8a—c show the mean SOC computed over all the classified pixels in the study
area for the no, low, and high climate change scenarios plotted from 2000 to 2052.
The SOC is estimated to decline from 2000 to 2052 under all climate change scenar-
ios by approximately 11 %, 14 %, and 24 %, for the no (Fig. 8a), low (Fig. 8b), and
high (Fig. 8c) climate change scenarios respectively. This trend has been observed
elsewhere in West African drylands when temperature increases and precipitation de-
creases (Tan et al., 2009; Liu et al., 2004; Touré, 2002; Batjes, 2001). Summary
statistics of the mean study area SOC results illustrated in these figures are tabulated
in Table 6. These results reflect the spatial variability and uncertainty imposed by the
different 2000 Landsat classifications and the spatio-temporal sensitivity of the GEMS
model to that variability.
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For all three climate scenarios, and for each simulation year, the mean study area
SOC obtained running GEMS with the hard decision tree classification (green filled
circles), is similar (within 4 gC m2) to the means of the 30 soft decision tree classification
model results (orange filled circles) (Figs. 7 and 8). This is not unexpected as the
hard decision tree classification is generated by applying a voting procedure to the
30 soft classification trees and demonstrates that the hard decision tree classification
approach does provide a representative single mean study area SOC estimate.

The mean study area SOC for individual soft classifications varies for each simula-
tion due to their different training data sampling which causes differences in the LCLU
class membership probabilities and due to spatial differences in the GEMS model in-
puts as discussed in Sect. 7.2.3. In 2000, for the no climate change scenario, the
mean study area SOC values vary over the 30 soft decision tree classifications from
1196.6 to 1228.8gC m? (Fig. 8a, Table 6). This 32.29gC m? SOC range corresponds
to a variation of 2.6 % of the mean study area hard decision tree classification SOC.
This variation decreases in time to 26.7 gC m? in 2052, equivalent to 2.5 % of the mean
study area hard classification SOC, and similarly it decreases to 31.4gC m? (3 %) and
29.9¢9C m? (3.2%) for the low (Fig. 8b, Table 6) and high (Fig. 8c, Table 6) climate
change scenarios. These results imply that using a state of the practice hard deci-
sion tree classification approach with a 9 class LCLU classification scheme imposes a
variability of a maximum of 3.2 % of the mean study area SOC.

8 Conclusions

Research has attested to the significance of land cover and land use (LCLU) change on
carbon dynamics (Scholes and Hall, 1996; Houghton et al., 1999; Lal, 2004; Tieszen,
2004) and on the utility of biogeochemical models to simulate soil and carbon biomass
under different land management (Metherell et al., 1993; Batjes, 2001; Liu et al., 2004;
Tschakert et al., 2004). However, differences between LCLU data sources and classi-
fication approaches, and errors in the LCLU data both in terms of classification errors
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and the degree of generalization of the landscape into the LCLU classes, may influ-
ence model outputs. Despite this, relatively few studies have examined this issue. In
this study, state of the practice bagged decision tree approaches for LCLU classifica-
tion of dry and wet season Landsat satellite data were used to assess the sensitivity of
SOC estimated using the spatially explicit Global Ensemble Biogeochemical Modeling
System (GEMS) under different climate scenarios. The study was undertaken in north-
ern Senegal, where satellite LCLU classification is particularly challenging because of
the semi-arid landscape, and where the coupling between future LCLU and climate
change is poorly understood.

The primary GEMS model input variables were Landsat LCLU classification maps,
used to parameterize the GEMS for land cover type and arable and non-arable Sene-
galese management practices, and spatially explicit soil and monthly precipitation and
temperature data. The model outputs analysed were the soil organic carbon (SOC) in
the top 0—20 cm soil layer and the above ground Net Primary Productivity (NPP). Thirty
soft decision tree Landsat classifications and a single hard decision tree classification
derived from the 30 soft classifications were used as independent inputs to the GEMS
model. A 9 land cover land use (LCLU) classification scheme (composed of plantation
forest, water, bare soil, mud flats, wetlands, mangrove, rainfed agriculture, irrigated
agriculture, and savanna grassland classes) was used. This classification scheme
and the bagged decision tree classification approach applied to a dry and wet sea-
son Landsat acquisition provided a high classification accuracy (Kappa 0.98; percent
correct 97.8 %) that reflects what we expect is the best Landsat classification typically
achievable.

Using the decision tree classification results the 2000 mean study area SOC and
the above ground NPP were about 1220 gC m? and 185 gC m? yr'1 respectively, which
is in general agreement with other study results generated using less refined model-
ing approaches. The GEMS was run to a 1900 equilibrium using potential vegetation
and long term climate averages, and then run from 1900 to 2000 which revealed a
decreasing mean study area SOC of 32 % reflecting the impact of human disturbance
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on carbon dynamics. The model was then run from 2000 to 2052 for different climate
change scenarios which revealed mean study area SOC declines from 2000 to 2052 by
11 %, 14 %, and 24 % for the no, low, and high climate change scenarios respectively.

This research provides a new method to estimate the variability of SOC due to satel-
lite LCLU classification errors. The single hard decision tree Landsat classification
results, generated by applying a voting procedure to the 30 soft decision tree results,
typically provided mean study area SOC values within about 4 gC m? of the mean of
the 30 soft decision tree classification results. This is not unexpected, and demon-
strates that hard decision tree classification provides an appropriate approach to define
a single classification appropriate for GEMS modeling. The 30 SOC maps estimated
independently using the 30 different soft classifications provide data that were used to
quantify the variability of SOC imposed by satellite classification errors.

At the study area scale, considering the mean study area SOC, the variability of
SOC imposed by satellite classification errors was not high. In 2000 the mean study
area SOC values varied over the 30 soft decision tree classifications by 32.2gC m?
and corresponded to 2.6 % of the mean study area hard decision tree classification
SOC. In 2052 this relative SOC variation was 2.5 %, 3 % and 3.2 % for the no, low and
high climate change scenarios respectively. These variations are much less than the
corresponding 11 %, 14 % and 24 % declines from 2000 to 2053 in mean study area
SOC modeled for the no, low and high climate change scenarios respectively.

Atlocal, pixel, scale the impacts of satellite classification errors can be very apparent.
The per-pixel coefficient of variation (the standard deviation divided by the mean) of
the 30 SOC soft decision tree estimates was used to quantify the pixel-level spatial
variability of SOC imposed by satellite classification errors. The highest coefficient of
variations occurred for the least accurately classified classes and were not negligible.
In this study, more than 20 % of the bare soil, mud flat, wetland and rainfed agriculture
pixels had SOC coefficient of variation values greater than 0.1 with some as great as
nearly 0.6. These high local-scale SOC variations are due to differences in the satellite
classification training data sampling, which causes differences in the mapped LCLU
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class membership probabilities, and due to the interaction of these differences with
spatial differences in the other GEMS model inputs.

The findings of this study indicate that the high local variability of SOC due to satellite
classification errors should be taken into consideration, for example, using the method
described here. This is particularly important as local-scale SOC variations imposed
by satellite classification errors may obscure modeled temporal changes in SOC due
to climate influences that may be highly land cover specific.
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Table 1. Summary of management practices used for the GEMS model parameterization. The of the GEMS soil
crop rotation probabilities should be read horizontally from time 1 to time 2; each row sums to 1. organic carbon
O
7 model
Savanna \ o
Grazing Moderate to high grazing intensity all year % A. M. Dieye et al.
Fire Once every year in February 8
Agriculture \ S
©
Growing season June to September D _
Crop composition Millet, sorghum, groundnuts
Crop/fallow ratio (year) (5—-10)/(1-5) o ! !
Tree removal Clear cut o
Fertilizer Low to moderate use of NPK fertilizer &
Cultivation Cultivation with cultivator tool (hoe) in July—September = ! !
Harvest Harvest with 90 % straw removal in October 2
Grazing Winter grazing November—December g' ! !
Crop rotation probabilities | time 1/time 2 Fallow Millet Sorghum Groundnuts %? ! !
Fallow 0.50 0.10 0.15 0.25 @
Millet 002 045  0.00 0.53 ! !
Sorghum 0.00 0.00 0.55 0.45 =
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Table 2. Description of the 9 land cover land use (LCLU) classes and the number of training
pixels used for the classification.

Code | LCLU class | Definition | Training pixels
1 Plantation Forest Pine Casuarina equisetifolia plantation forest known 113
only to occur in the Niayes coastal ecoregion.
2 Water Permanent inland water (rivers, lakes); defined by 627
visual interpretation of dry and wet season Landsat
ETM+ data.
3 Bare Soil Natural areas devoid of vegetation; defined by visual | 280
interpretation of dry and wet season Landsat ETM+
data.
4 Rainfed agriculture | Agricultural fields which crop development relies pri- | 2.150

marily on natural rainfall; defined by visual interpre-
tation of dry and wet season Landsat ETM+ data
and using contextual knowledge.

5 Wetlands Areas inundated or saturated by surface or ground 922
water in a permanent or temporary basis to support
a prevalence of vegetation adapted for life in satu-
rated conditions; defined after Yangambi classifica-
tion.

6 Mangrove Trees and shrubs that grow in saline coastal habi- | 72
tats; defined after Yangambi classification.

7 Mud flats A mud area devoid of vegetation; seasonally inun- 149
dated; defined by visual interpretation of dry and wet
season Landsat ETM+ data.

8 Irrigated agriculture | Agricultural fields in proximity to the Senegal River | 151
and to artesian wells; defined by visual interpreta-
tion of dry and wet season Landsat ETM+ data and
using contextual knowledge.

9 Savanna Grassland | Open savanna with annual grasses and scattered | 7.253
trees or shrubs (< 10% of cover); defined after
Yangambi classification.

Total | 11.717
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Table 3. Soft-to-hard confusion matrix results for the 9 land cover land use classes. The
cell values report percentages of the total area; a total of 305 428 pixels were considered.
The percent correct is 97.79 % and Kappa-coefficient is 0.98. Grey fields, along the diagonal,
represent for each class, the percentage correctly classified. The classes are: 1. Plantation;
2. Water; 3. Bare soil; 4. Rainfed agriculture; 5. Wetlands; 6. Mangrove; 7. Mud flats; 8. Irrigated

agriculture; 9. Savanna grassland (Table 2).

True Classification ‘ Row Producer’s
Class 1 2 3 4 5 6 7 8 9 | Total Accuracy
1 3.30 0.00 0.00 0.00 0.03 0.00 0.00 0.02 0.00 34 98.4%
2 0.00 13.94 0.00 0.00 0.03 0.00 0.00 0.00 0.00 14.0 99.8%
3 0.00 0.00 1.43 0.01 0.00 0.00 0.02 0.00 0.02 1.5 96.1%
4 0.00 0.00 0.02 6.54 0.00 0.00 0.01 0.00 0.14 6.7 97.4%
5 0.02 0.00 0.00 0.00 1.04 0.04 0.04 0.05 0.07 1.3 82.0%
6 0.01 0.00 0.00 0.00 0.05 0.03 0.00 0.01 0.00 0.1 35.1%
7 0.00 0.00 0.05 0.03 0.01 0.00 4.06 0.01 0.12 4.3 94.8%
8 0.02 0.00 0.00 0.00 0.06 0.01 0.02 1.00 0.04 1.2 86.7 %
9 0.00 0.00 0.01 0.19 0.06 0.00 0.13 0.08 67.21 | 67.7 99.3%
Column

Total 3.4 13.9 1.5 6.8 1.3 0.1 4.3 1.2 67.6 100

User’s

Accuracy | 98.4% 100.0% 941% 96.5% 819% 365% 94.7% 857% 99.4%
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Table 4. Comparison of the minimum, mean and maximum SOC (Fig. 3) and NPP (Fig. 4)
simulated for the 9 LCLU classes using the year 2000 hard classification (Fig. 1). Only pix-
els where SOC and NPP was modeled are considered (i.e., not water bodies, clouds, cloud

shadows, settlement areas, or where there was no Landsat data).

SOC NPP

LCLU class (qC mz) (oC m2/yr)
| Min Mean  Max | Min Mean Max

Plantation forest 452 1190.32 1525 | O 16255 756
Bare soil 358 48022 1491 | O 11.28 118
Rainfed agriculture | 518 14415 2655 | 14 295.39 596
Wetlands 262 10946 2088 | 8 113.93 258
Mangrove 455 1010.11 1573 | 8 170.09 412
Mud flats 353 537.63 1537 | 0 4536 149
Irrigated agriculture | 417 1487.47 4138 | 0 200.99 720
Savanna 411 121244 1543 | 0 159.98 243
Overthe study area | 262 1219.3 4138 | 0 1851 756
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Table 5. Summary statistics of the mean of the 30 soft decision tree SOC estimates for year
2000. The statistics are summarized with respect to the 9 LCLU classes defined by the hard
decision tree classification (Fig. 1). The mean study area mean SOC is 1217.4gC m?. Only
pixels where SOC was modeled are considered (i.e., not water bodies, clouds, cloud shadows,
settlement areas, or where there was no Landsat data).

LCLU class Minimum Mean SOC Mean Mean SOC Maximum Mean SOC
(gCm?) (gCm?) (gCm?)
Plantation forest 445.0 1203.26 1785.57
Bare soil 374.0 588.83 1491.0
Rainfed agriculture 474.6 1411.63 2655.0
Wetlands 150.0 1099.39 2278.73
Mangrove 439.0 979.5 1588.97
Mud flats 365.0 706.47 2207.17
Irrigated agriculture 457.93 1366.51 4138.0
Savanna 412.0 1211.9 2714.0
Over the study area 150.0 1217.4 4138.0
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Table 6. Summary statistics of the mean study area hard and soft decision tree (DT) soil
organic carbon (SOC) (gC m?) model estimates illustrated in Figs. 7 and 8, for the no, low, and

high climate change scenarios, for selected years.

Carbon dynamics 1900-2000

\ No climate change Scenario | Low climate change scenario \ High climate change scenario

‘ 1900 1940 1980 2000 ‘ 2020 2040 2052 ‘ 2020 2040 2052 ‘ 2020 2040 2052
Hard DT SOC \ 1803.3 1470.6 12825 12193 \ 1138 11029 1080.7 \ 1129.3 10822 1052.6 \ 1104.8 1014 9315
Mean of 30 soft DT 1803.3 14711 1283.3 1217.4 | 11354 1100.1 1077.7 | 1128 1080.5 1051.3 | 1103.2 1011 929.7
SOC estimates
Minimum of 30 soft DT | 1803.2 1465.3 1267.1 1196.6 | 1117.5 1083.1 1061.2 | 1108.8 10616 1032.8 | 1083.4 991.2 911.3
SOC estimates
Maximum of 30 soft 1803.3 14742 12919 1228.8 | 1145.1 1109.9 1087.8 | 1139.8 1093.2 1064.2 | 11146 1023 941.2
DT SOC estimates
Range of 30 soft DT 8.9 24.7 32.2 27.5 26.8 26.7 31.1 31.7 31.4 31.2 31.6 29.9
SOC estimates and (0.00) (0.60) (1.92) (2.64) | (2.42) (2.44) (248 | (2.76) (293) (299) | (2.83)  (3.13) (3.22)
percent of mean (%)
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I Plantation forest

Il Vater

[ Bare soil

Il Rainfed Agriculture

7] Wetlands
Mangrove

[ Mud flats

[ Irrigated agriculture

[] Savanna grassland

—— Limit of the study area

20 Kilometers

Fig. 1. Landsat 28.5m hard decision tree classification of the study area in north-western
Senegal, covering 1560 km? lying 15°24'—17°00’ W and 15°00'=16°42' N. Dry and wet season
2002 Landsat data were classified using a bagged decision tree classification procedure into
9 land cover land use classes (plantation forest, water, bare soil, rainfed agriculture, wetlands,
mangrove, mud flats, irrigated agriculture, and savanna grassland). The study area is shown
bounded by a black vector. White shows unclassified (clouds, cloud shadows, settlement areas,
or no Landsat data).
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Fig. 2. The “reliability” of the hard decision tree classification results shown in Fig. 1. For each
pixel the number of unique classes (maximum 9) that it could be independently classified as
over the 30 decision tree classification runs is shown. Pixels reporting a value of 1 were always
classified as one particular LCLU type, whereas pixels reporting values of 5—7 were variously
classified into between 5—7 LCLU types. White shows unclassified (water bodies, clouds, cloud
shadows, settlement areas, or no Landsat data).
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© 500 - 1000
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[ Unclassified
—— Limit of the study area

Fig. 3. GEMS soil organic carbon (SOC) model output for 2000 using the 9 class 28.5m
Landsat hard decision tree classification illustrated in Fig. 1 and the corresponding spatially
explicit model inputs for the 9 LCLU classes. White shows areas where no SOC was modeled
(water bodies, clouds, cloud shadows, settlement areas, or no Landsat data).
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Fig. 4. GEMS net primary productivity (NPP) model output for 2000 using the 9 class 28.5m
Landsat hard decision tree classification illustrated in Fig. 1 and the corresponding spatially
explicit model inputs for the 9 LCLU classes. White shows areas where no NPP was modeled
(water bodies, clouds, cloud shadows, settlement areas, or no Landsat data).
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Fig. 5. The soil organic carbon (SOC) coefficient derived from the 30 soft decision tree classi- ! !
fication model runs. The coefficient of variation (standard deviation divided by mean) is dimen-  ©
sionless. The 2000 Landsat data were classified 30 times into one of more the 9 LCLU classes & _
. . . . (=
and the SOC modeled for the corresponding spatially explicit model inputs for those classes. 7
White shows areas where no SOC was modeled (water bodies, clouds, cloud shadows, settle- g'
ment areas, or no Landsat data). ) _
E
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Fig. 6. Histograms of the year 2000 SOC coefficient of variation (Fig. 5) for each land cover

Bare soil
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Irrigated Ag.

land use class defined by the hard classification (Fig. 1).
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Fig. 7. Mean GEMS modeled soil organic carbon (SOC) computed for the entire study area
under the no climate change scenario, from 1900 to 2052 at 4 yearly intervals, using the 9
land cover land uses classes and different Landsat classification approaches. The open circles
show the mean SOC for each of the 30 independent bagged decision trees computed using
the soft classification-carbon assignment approach; the orange filled circles show the mean
across 30 soft classification simulations; the green filled circles show the mean SOC derived
simulations using the hard decision tree classification.
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Fig. 8. Mean GEMS modeled soil organic carbon (SOC) computed for all the study area for the
period 2000 to 2052, under the (a) no, (b) low, and (c) high climate change scenarios.
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